Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38579724

RESUMO

A subset of patients with IDH-mutant glioma respond to inhibitors of mutant IDH (IDHi), yet the molecular underpinnings of such responses are not understood. Here, we profiled by single-cell or single-nucleus RNA-sequencing three IDH-mutant oligodendrogliomas from patients who derived clinical benefit from IDHi. Importantly, the tissues were sampled on-drug, four weeks from treatment initiation. We further integrate our findings with analysis of single-cell and bulk transcriptomes from independent cohorts and experimental models. We find that IDHi treatment induces a robust differentiation toward the astrocytic lineage, accompanied by a depletion of stem-like cells and a reduction of cell proliferation. Furthermore, mutations in NOTCH1 are associated with decreased astrocytic differentiation and may limit the response to IDHi. Our study highlights the differentiating potential of IDHi on the cellular hierarchies that drive oligodendrogliomas and suggests a genetic modifier that may improve patient stratification.

2.
J Med Chem ; 67(5): 4063-4082, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482827

RESUMO

Dengue is a global public health threat, with about half of the world's population at risk of contracting this mosquito-borne viral disease. Climate change, urbanization, and global travel accelerate the spread of dengue virus (DENV) to new areas, including southern parts of Europe and the US. Currently, no dengue-specific small-molecule antiviral for prophylaxis or treatment is available. Here, we report the discovery of JNJ-1802 as a potent, pan-serotype DENV inhibitor (EC50's ranging from 0.057 to 11 nM against the four DENV serotypes). The observed oral bioavailability of JNJ-1802 across preclinical species, its low clearance in human hepatocytes, the absence of major in vitro pharmacology safety alerts, and a dose-proportional increase in efficacy against DENV-2 infection in mice were all supportive of its selection as a development candidate against dengue. JNJ-1802 is being progressed in clinical studies for the prevention or treatment of dengue.


Assuntos
Vírus da Dengue , Dengue , Hidrocarbonetos Halogenados , Indóis , Camundongos , Humanos , Animais , Sorogrupo , Dengue/tratamento farmacológico
3.
Nat Cancer ; 4(10): 1437-1454, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640929

RESUMO

Cholinergic nerves are involved in tumor progression and dissemination. In contrast to other visceral tissues, cholinergic innervation in the hepatic parenchyma is poorly detected. It remains unclear whether there is any form of cholinergic regulation of liver cancer. Here, we show that cholinergic T cells curtail the development of liver cancer by supporting antitumor immune responses. In a mouse multihit model of hepatocellular carcinoma (HCC), we observed activation of the adaptive immune response and induction of two populations of CD4+ T cells expressing choline acetyltransferase (ChAT), including regulatory T cells and dysfunctional PD-1+ T cells. Tumor antigens drove the clonal expansion of these cholinergic T cells in HCC. Genetic ablation of Chat in T cells led to an increased prevalence of preneoplastic cells and exacerbated liver cancer due to compromised antitumor immunity. Mechanistically, the cholinergic activity intrinsic in T cells constrained Ca2+-NFAT signaling induced by T cell antigen receptor engagement. Without this cholinergic modulation, hyperactivated CD25+ T regulatory cells and dysregulated PD-1+ T cells impaired HCC immunosurveillance. Our results unveil a previously unappreciated role for cholinergic T cells in liver cancer immunobiology.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor de Morte Celular Programada 1/genética , Monitorização Imunológica , Linfócitos T Reguladores/patologia
4.
J Med Chem ; 66(13): 8808-8821, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37389813

RESUMO

In the absence of any approved dengue-specific treatment, the discovery and development of a novel small-molecule antiviral for the prevention or treatment of dengue are critical. We previously reported the identification of a novel series of 3-acyl-indole derivatives as potent and pan-serotype dengue virus inhibitors. We herein describe our optimization efforts toward preclinical candidates 24a and 28a with improved pan-serotype coverage (EC50's against the four DENV serotypes ranging from 0.0011 to 0.24 µM for 24a and from 0.00060 to 0.084 µM for 28a), chiral stability, and oral bioavailability in preclinical species, as well as showing a dose-proportional increase in efficacy against DENV-2 infection in vivo in mice.


Assuntos
Vírus da Dengue , Dengue , Camundongos , Animais , Sorogrupo , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Indóis/farmacologia , Indóis/uso terapêutico
5.
Cancer Cell ; 41(2): 323-339.e10, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36736318

RESUMO

Angioimmunoblastic T cell lymphoma (AITL) is a peripheral T cell lymphoma that originates from T follicular helper (Tfh) cells and exhibits a prominent tumor microenvironment (TME). IDH2 and TET2 mutations co-occur frequently in AITL, but their contribution to tumorigenesis is poorly understood. We developed an AITL mouse model that is driven by Idh2 and Tet2 mutations. Malignant Tfh cells display aberrant transcriptomic and epigenetic programs that impair TCR signaling. Neoplastic Tfh cells bearing combined Idh2 and Tet2 mutations show altered cross-talk with germinal center B cells that promotes B cell clonal expansion while decreasing Fas-FasL interaction and reducing B cell apoptosis. The plasma cell count and angiogenesis are also increased in the Idh2-mutated tumors, implying a major relationship between Idh2 mutation and the characteristic AITL TME. Our mouse model recapitulates several features of human IDH2-mutated AITL and provides a rationale for exploring therapeutic targeting of Tfh-TME cross-talk for AITL patients.


Assuntos
Dioxigenases , Linfadenopatia Imunoblástica , Linfoma de Células T , Animais , Humanos , Camundongos , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Linfadenopatia Imunoblástica/genética , Isocitrato Desidrogenase/genética , Linfoma de Células T/genética , Mutação , Células T Auxiliares Foliculares/patologia , Linfócitos T Auxiliares-Indutores , Microambiente Tumoral/genética
6.
Proc Natl Acad Sci U S A ; 120(4): e2208176120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652477

RESUMO

Mutations in IDH1, IDH2, and TET2 are recurrently observed in myeloid neoplasms. IDH1 and IDH2 encode isocitrate dehydrogenase isoforms, which normally catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). Oncogenic IDH1/2 mutations confer neomorphic activity, leading to the production of D-2-hydroxyglutarate (D-2-HG), a potent inhibitor of α-KG-dependent enzymes which include the TET methylcytosine dioxygenases. Given their mutual exclusivity in myeloid neoplasms, IDH1, IDH2, and TET2 mutations may converge on a common oncogenic mechanism. Contrary to this expectation, we observed that they have distinct, and even opposite, effects on hematopoietic stem and progenitor cells in genetically engineered mice. Epigenetic and single-cell transcriptomic analyses revealed that Idh2R172K and Tet2 loss-of-function have divergent consequences on the expression and activity of key hematopoietic and leukemogenic regulators. Notably, chromatin accessibility and transcriptional deregulation in Idh2R172K cells were partially disconnected from DNA methylation alterations. These results highlight unanticipated divergent effects of IDH1/2 and TET2 mutations, providing support for the optimization of genotype-specific therapies.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Isocitrato Desidrogenase , Células-Tronco , Animais , Camundongos , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutação , Neoplasias , Células-Tronco/metabolismo
7.
Science ; 378(6615): 68-78, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201590

RESUMO

Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.


Assuntos
Neoplasias Encefálicas , Cromossomos Humanos Par 8 , Glioma , Isocitrato Desidrogenase , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromossomos Humanos Par 8/genética , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
8.
Elife ; 102021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34939930

RESUMO

Gonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G-protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization. This might be an evolutionary adaptation that enables LH surge generation and ovulation. To test this idea, we fused the chicken GnRHR Ctail to the endogenous murine GnRHR in a transgenic model. The LH surge was blunted, but not blocked in these mice. In contrast, they showed reductions in FSH production, ovarian follicle development, and fertility. Addition of the Ctail altered the nature of agonist-induced calcium signaling required for normal FSH production. The loss of the GnRHR Ctail during mammalian evolution is unlikely to have conferred a selective advantage by enabling the LH surge. The adaptive significance of this specialization remains to be determined.


Assuntos
Fertilidade , Hormônio Luteinizante/metabolismo , Receptores LHRH/química , Receptores LHRH/fisiologia , Animais , Galinhas , Feminino , Hormônio Foliculoestimulante/metabolismo , Camundongos , Camundongos Transgênicos , Folículo Ovariano/fisiologia , Receptores Acoplados a Proteínas G/fisiologia
9.
Cell Death Differ ; 28(11): 3036-3051, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34059798

RESUMO

The tumor suppressor PTEN is disrupted in a large proportion of cancers, including in HER2-positive breast cancer, where its loss is associated with resistance to therapy. Upon genotoxic stress, ataxia telangiectasia mutated (ATM) is activated and phosphorylates PTEN on residue 398. To elucidate the physiological role of this molecular event, we generated and analyzed knock-in mice expressing a mutant form of PTEN that cannot be phosphorylated by ATM (PTEN-398A). This mutation accelerated tumorigenesis in a model of HER2-positive breast cancer. Mammary tumors in bi-transgenic mice carrying MMTV-neu and Pten398A were characterized by DNA damage accumulation but reduced apoptosis. Mechanistically, phosphorylation of PTEN at position 398 is essential for the proper activation of the S phase checkpoint controlled by the PI3K-p27Kip1-CDK2 axis. Moreover, we linked these defects to the impaired ability of the PTEN-398A protein to relocalize to the plasma membrane in response to genotoxic stress. Altogether, our results uncover a novel role for ATM-dependent PTEN phosphorylation in the control of genomic stability, cell cycle progression, and tumorigenesis.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/genética , Pontos de Checagem do Ciclo Celular/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinogênese , Ciclo Celular , Feminino , Humanos , Neoplasias Mamárias Animais , Camundongos
10.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444287

RESUMO

In order to sustain proficient life-long hematopoiesis, hematopoietic stem cells (HSCs) must possess robust mechanisms to preserve their quiescence and genome integrity. DNA-damaging stress can perturb HSC homeostasis by affecting their survival, self-renewal, and differentiation. Ablation of the kinase ataxia telangiectasia mutated (ATM), a master regulator of the DNA damage response, impairs HSC fitness. Paradoxically, we show here that loss of a single allele of Atm enhances HSC functionality in mice. To explain this observation, we explored a possible link between ATM and the tumor suppressor phosphatase and tensin homolog (PTEN), which also regulates HSC function. We generated and analyzed a knockin mouse line (PtenS398A/S398A), in which PTEN cannot be phosphorylated by ATM. Similar to Atm+/-, PtenS398A/S398A HSCs have enhanced hematopoietic reconstitution ability, accompanied by resistance to apoptosis induced by genotoxic stress. Single-cell transcriptomic analyses and functional assays revealed that dormant PtenS398A/S398A HSCs aberrantly tolerate elevated mitochondrial activity and the accumulation of reactive oxygen species, which are normally associated with HSC priming for self-renewal or differentiation. Our results unveil a molecular connection between ATM and PTEN, which couples the response to genotoxic stress and dormancy in HSCs.


Assuntos
Apoptose , Diferenciação Celular , Dano ao DNA , Células-Tronco Hematopoéticas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Substituição de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , PTEN Fosfo-Hidrolase/genética
11.
Curr Opin Biotechnol ; 68: 181-185, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33360716

RESUMO

Mutations in the genes encoding isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are key drivers of diverse cancers, including gliomas and hematological malignancies. IDH mutations cause neomorphic enzymatic activity that results in the production of the oncometabolite 2-hydroxyglutarate (2-HG). In addition to 2-HG's well-known effects on tumor cells themselves, it has become increasingly clear that 2-HG directly influences the tumor microenvironment (TME). In particular, the non-cell-autonomous impact of 2-HG on the immune system likely plays a major role in shaping disease development and response to therapy. It is therefore critical to understand how IDH mutations affect the metabolism, epigenetics, and functions of tumor-infiltrating immune cells. Such knowledge may point towards new therapeutic approaches to treat IDH-mutant cancers.


Assuntos
Glioma , Isocitrato Desidrogenase , Fenômenos Fisiológicos Celulares , Epigenômica , Humanos , Isocitrato Desidrogenase/genética , Mutação , Microambiente Tumoral/genética
12.
Blood ; 137(7): 945-958, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33254233

RESUMO

Isocitrate dehydrogenase (IDH) mutations are common genetic alterations in myeloid disorders, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Epigenetic changes, including abnormal histone and DNA methylation, have been implicated in the pathogenic build-up of hematopoietic progenitors, but it is still unclear whether and how IDH mutations themselves affect hematopoiesis. Here, we show that IDH1-mutant mice develop myeloid dysplasia in that these animals exhibit anemia, ineffective erythropoiesis, and increased immature progenitors and erythroblasts. In erythroid cells of these mice, D-2-hydroxyglutarate, an aberrant metabolite produced by the mutant IDH1 enzyme, inhibits oxoglutarate dehydrogenase activity and diminishes succinyl-coenzyme A (CoA) production. This succinyl-CoA deficiency attenuates heme biosynthesis in IDH1-mutant hematopoietic cells, thus blocking erythroid differentiation at the late erythroblast stage and the erythroid commitment of hematopoietic stem cells, while the exogenous succinyl-CoA or 5-ALA rescues erythropoiesis in IDH1-mutant erythroid cells. Heme deficiency also impairs heme oxygenase-1 expression, which reduces levels of important heme catabolites such as biliverdin and bilirubin. These deficits result in accumulation of excessive reactive oxygen species that induce the cell death of IDH1-mutant erythroid cells. Our results clearly show the essential role of IDH1 in normal erythropoiesis and describe how its mutation leads to myeloid disorders. These data thus have important implications for the devising of new treatments for IDH-mutant tumors.


Assuntos
Eritropoese/genética , Células-Tronco Hematopoéticas/metabolismo , Heme/biossíntese , Isocitrato Desidrogenase/genética , Mutação de Sentido Incorreto , Mutação Puntual , Pré-Leucemia/genética , Acil Coenzima A/biossíntese , Acil Coenzima A/deficiência , Anemia/genética , Animais , Medula Óssea/patologia , Eritroblastos/metabolismo , Técnicas de Introdução de Genes , Glutaratos/metabolismo , Heme/deficiência , Heme Oxigenase-1/metabolismo , Isocitrato Desidrogenase/fisiologia , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/patologia , Mielopoese/genética , Pré-Leucemia/metabolismo , Pré-Leucemia/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Esplenomegalia/etiologia , Trombocitopenia/genética
13.
Nat Commun ; 11(1): 5132, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046700

RESUMO

Modern geophysics highlights that the slip behaviour response of faults is variable in space and time and can result in slow or fast ruptures. However, the origin of this variation of the rupture velocity in nature as well as the physics behind it is still debated. Here, we first highlight how the different types of fault slip observed in nature appear to stem from the same physical mechanism. Second, we reproduce at the scale of the laboratory the complete spectrum of rupture velocities observed in nature. Our results show that the rupture velocity can range from a few millimetres to kilometres per second, depending on the available energy at the onset of slip, in agreement with theoretical predictions. This combined set of observations bring a new explanation of the dominance of slow rupture fronts in the shallow part of the crust or in areas suspected to present large fluid pressure.

14.
Rev Sci Instrum ; 91(3): 034502, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32260005

RESUMO

An experimental apparatus is described for the investigation of frequency dispersion, and related attenuation, of fluid-saturated rocks under confining pressure and undrained boundary conditions. The forced-oscillation method is performed on cylindrical samples. The measurement of stress and strain under hydrostatic oscillations allows the dynamic bulk modulus to be inferred, while axial oscillations give access to dynamic Young's modulus and Poisson's ratio. We present calibration measurements for dispersion and attenuation on standard materials such as glass, plexiglass, and gypsum. Results show that for strain amplitudes below 10-5, robust measurements can be achieved up to 1 kHz and 1.3 Hz, respectively, for axial and hydrostatic oscillations. A new experimental design of the endplatens (sample holders) allows control of drained or undrained boundary conditions using microvalves. The microvalves were tested on a porous Vosgian sandstone. In addition, numerical modeling confirms that the resonances of the apparatus only affect frequencies above 1 kHz, with little sensitivity to the sample's stiffness.

15.
Cancer Cell ; 37(3): 308-323.e12, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32142668

RESUMO

Diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors for which there is currently no effective treatment. Some of these tumors combine gain-of-function mutations in ACVR1, PIK3CA, and histone H3-encoding genes. The oncogenic mechanisms of action of ACVR1 mutations are currently unknown. Using mouse models, we demonstrate that Acvr1G328V arrests the differentiation of oligodendroglial lineage cells, and cooperates with Hist1h3bK27M and Pik3caH1047R to generate high-grade diffuse gliomas. Mechanistically, Acvr1G328V upregulates transcription factors which control differentiation and DIPG cell fitness. Furthermore, we characterize E6201 as a dual inhibitor of ACVR1 and MEK1/2, and demonstrate its efficacy toward tumor cells in vivo. Collectively, our results describe an oncogenic mechanism of action for ACVR1 mutations, and suggest therapeutic strategies for DIPGs.


Assuntos
Receptores de Ativinas Tipo I/química , Receptores de Ativinas Tipo I/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Mutação , Receptores de Ativinas Tipo I/antagonistas & inibidores , Receptores de Ativinas Tipo I/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Glioma/tratamento farmacológico , Glioma/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lactonas/farmacologia , Masculino , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Oligodendroglia/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
17.
Nat Commun ; 10(1): 2678, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213601

RESUMO

Myeloid cells contribute to tumor progression, but how the constellation of receptors they express regulates their functions within the tumor microenvironment (TME) is unclear. We demonstrate that Fcmr (Toso), the putative receptor for soluble IgM, modulates myeloid cell responses to cancer. In a syngeneic melanoma model, Fcmr ablation in myeloid cells suppressed tumor growth and extended mouse survival. Fcmr deficiency increased myeloid cell population density in this malignancy and enhanced anti-tumor immunity. Single-cell RNA sequencing of Fcmr-deficient tumor-associated mononuclear phagocytes revealed a unique subset with enhanced antigen processing/presenting properties. Conversely, Fcmr activity negatively regulated the activation and migratory capacity of myeloid cells in vivo, and T cell activation by bone marrow-derived dendritic cells in vitro. Therapeutic targeting of Fcmr during oncogenesis decreased tumor growth when used as a single agent or in combination with anti-PD-1. Thus, Fcmr regulates myeloid cell activation within the TME and may be a potential therapeutic target.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Transporte/metabolismo , Melanoma Experimental/imunologia , Proteínas de Membrana/metabolismo , Monócitos/imunologia , Neoplasias Cutâneas/imunologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular Tumoral/transplante , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Feminino , Ativação Linfocitária/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
18.
Endocrinology ; 159(12): 4077-4091, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30364975

RESUMO

Inhibins are gonadal hormones that act on pituitary gonadotrope cells to suppress FSH synthesis and secretion. Inhibin A and B are heterodimers of the inhibin ⍺-subunit disulfide-linked to one of two inhibin ß-subunits. Homodimers or heterodimers of the inhibin ß-subunits form the activins, which stimulate FSH production. Activins signal through complexes of type I and II receptor serine/threonine kinases to increase transcription of the FSHß subunit gene. According to in vitro observations, inhibins impair FSH synthesis by competitively binding to activin type II receptors, particularly in the presence of the TGFß type III receptor (TGFBR3, or betaglycan). The role of TGFBR3 in inhibin action in vivo has not been determined. Here, we ablated Tgfbr3 specifically in murine gonadotropes. Conditional knockout females were supra-fertile, exhibiting enhanced folliculogenesis, numbers of ovulated eggs per cycle, and litter sizes relative to control mice. Despite these phenotypes, FSH levels appeared to be unaltered in knockout mice, and the mechanisms underlying their enhanced fertility remain unexplained. Inhibin B is the predominant form of the hormone in males and in females during most stages of the estrous cycle. Remarkably, inhibin A, but not inhibin B, suppression of FSH synthesis was impaired in cultured pituitaries of knockout mice, which may explain the absence of discernible changes in FSH levels in vivo. Collectively, these data challenge current dogma by demonstrating that TGFBR3 (betaglycan) functions as an inhibin A, but not an inhibin B, coreceptor in gonadotrope cells in vivo. Mechanisms of inhibin B action merit further investigation.


Assuntos
Gonadotrofos/metabolismo , Inibinas/metabolismo , Proteoglicanas/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Fertilidade/genética , Hormônio Foliculoestimulante/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Ligação Proteica , Multimerização Proteica , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética
19.
Cell Stem Cell ; 19(2): 205-216, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27184401

RESUMO

The E3 ubiquitin ligase Mule is often overexpressed in human colorectal cancers, but its role in gut tumorigenesis is unknown. Here, we show in vivo that Mule controls murine intestinal stem and progenitor cell proliferation by modulating Wnt signaling via c-Myc. Mule also regulates protein levels of the receptor tyrosine kinase EphB3 by targeting it for proteasomal and lysosomal degradation. In the intestine, EphB/ephrinB interactions position cells along the crypt-villus axis and compartmentalize incipient colorectal tumors. Our study thus unveils an important new avenue by which Mule acts as an intestinal tumor suppressor by regulation of the intestinal stem cell niche.


Assuntos
Efrina-B3/metabolismo , Intestinos/citologia , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Nicho de Células-Tronco , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Polipose Adenomatosa do Colo/patologia , Alelos , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Endocitose , Células HEK293 , Humanos , Camundongos Knockout , Modelos Biológicos , Mutação/genética , Celulas de Paneth/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...